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Abstract

w IIIŽ .Ž .Ž .x2q Ž . Ž Ž .Cationic Ru app bipy H O 1 complex H appsN- hydroxyphenyl pyridine-2-carboxaldimine; bipys2,2’-2 2
.bipyridyl has been synthesized and characterized by physico-chemical methods. Complex 1 is found to be an effective

Ž .catalyst in the oxidation of both saturated and unsaturated hydrocarbons by using tert-butylhydroperoxide t-BuOOH . A
Ž .mechanism involving formation of and transfer from a reactive high valent Ru V -oxo species as catalytic intermediate is

proposed for the catalytic processes. The results of the product distribution in the present investigation clearly indicate the
w VŽ .Ž . x2qpreference for side-on approach of olefins and the high electrophilic nature of Ru5O bond in Ru app bipy O

intermediate complex, which leads to the higher affinity of hydrogen atomrhydride abstraction than oxo-transfer to C5C
double bond. q 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Metal catalyzed oxo-functionalization of hydro-
carbons is a subject of fundamental and technologi-

w xcal importance 1–5 . In this regard, metallopor-
w xphyrins have been used 6 extensively, owing to

their direct relationship to enzymatic oxidation with
w xcytochrome P-450 7–9 . The same catalytic oxida-

tion reactions are mimicked by various transition
w xmetal complexes 10–23 containing non-porphyrinic

ligands, viz. Schiff-bases, polypyridyl ligands, etc. In
this regard, ruthenium complexes by virtue of their
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wide range of reversible and accessible oxidation
states have proved to be useful catalysts for oxida-
tion of organic substrates using molecular oxygen
w x w x w18,19 , iodosylbenzene 24,25 , hypochlorite 26–

x w x w x29 , oxone 30 and t-butylhydroperoxide 31–33 .
Use of alkyl hydroperoxide is of particular interest in
view of its ability towards oxo-functionalisation of

`aliphatic C H bond, selectively in presence of ruthe-
nium catalyst complexes. Safety and environmental
concerns have attached special importance to the
catalytic scheme with alkyl hydroperoxides and hy-

wdrogen peroxide. Our current research, interest 34–
x38 is focused on the studies of oxygenation of

saturated and unsaturated hydrocarbons catalyzed by
transition metal complexes of non-porphyrinic lig-
ands. Evaluation of metal complexes with the requi-
sites necessary for effective and selective catalytic
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transformation is our goal. We have thus undertaken
an investigation of hydrocarbon oxidation with tert-

Ž .butylhydroperoxide t-BuOOH catalyzed by a new
w I I I Ž .Ž .Ž . x 2 q ŽR u ap p b ip y H O H ap p s N -2 2
Ž .hydroxyphenyl pyridine-2-carboxaldimine; bipy s

. Ž .bipyridyl complex 1 . The present paper reports the
synthesis and characterization of complex 1, along
with its reactivity towards oxidation of organic sub-
strates in presence of t-BuOOH.

2. Experimental

2.1. Materials

1 was synthesized by interacting RuCl with 2-3

pyridine carboxaldehyde, 2-aminophenol and 2,2’-bi-
Ž .pyridyl bipy in a stoichiometric ratio. To a

Ž . Žmethanolic solution 15 ml of 2-aminophenol 0.218
. Žg, 2 mmol , 2-pyridine carboxaldehyde 0.214 g, 2

.mmol was added and stirred for 30 min. Upon
Ž .addition of RuCl , 3H O 0.522 g, 2 mmol to this3 2

solution, the yellow colour changed to dark brown.
ŽAfter being refluxed for 2 h, 2,2’-bipyridyl 0.312 g,

.2 mmol was added and the reaction mixture was
further refluxed for 6 h. The dark brown solution,
which upon evaporation to dryness yielded a solid,

Ž .was washed thoroughly with water–methanol 8:2
mixture, and finally, dried in desiccator over CaCl .2

Ž .Y ie ld 8 2 % . A n a l. C a lc u la te d fo r
RuC N O H Cl : C, 47.06; H, 3.74; N, 9.98.22 4 3 21 2

Found: C, 47.12; H, 3.49; N, 10.13. UV–Vis data in
Ž Ž y1 y1.. Ž .CH CN l , nm ´ , M cm : 242 7062 ,3 max max

Ž . Ž . Ž y1 .475 s 4266 , 550 4030 . IR cm : 1580, 1240.
m s1.98 BM. All other chemicals and solventseff

were of A.R. grade and used as obtained. Doubly-
distilled water was used throughout the experiments.

2.2. Instrumentation

The electronic absorption spectra were measured
with a GBC Cintra 10 spectrophotometer. Infrared

Žspectra were obtained on a Perkin-Elmer Model
. Ž .783 spectrometer using KBr pellets . Electrochemi-

cal studies were carried out in acetonitrile medium
Ž .by using tetrabutylammoniumperchlorate TBAP as

supporting electrolyte. A PAR Electrochemical
Ž .equipment Model 174A , equipped with a platinum

working electrode, and a standard calomel electrode

Ž .SCE as reference were used for this purpose. All
potentials are expressed against SCE. Magnetic sus-
ceptibility was measured by using a PAR-155 vibrat-
ing sample magnetometer. A Perkin-Elmer 240C
elemental analyzer was used to collect microanalyti-

Ž .cal data C, H, N .

2.3. Procedure of catalytic studies

In a typical experiment, 0.1 mmol of complex 1,
Ž0.1 mmol of benzyltributylammoniumchloride phase

.transfer catalyst, PTC and 10.0 mmol of substrate in
10 ml of CH Cl were magnetically stirred with2 2

Ž .10.0 mmol t-BuOOH 70% aqueous solution at
room temperature. Aliquots of the CH Cl layer was2 2

withdrawn at chosen interval of time subjected to gas
Ž . Ž .chromatographic GC analysis for product s . Gas

chromatographic analyses were performed with a
Carlo Erba GC 8000Top series on a Tenax column
connected with a FID detector. GC parameters were
quantified by the authentic product samples prior to
the analysis.

3. Results and discussion

Ž .The structural representation tentative of the
complex 1 is shown in Fig. 1. The IR spectrum of
the complex 1 shows bands at 1580 and 1240 cmy1,

` ` `corresponding to coordinated C5N and C O
stretchings. The UV–Vis spectrum of complex 1 in

Ž .CH CN Fig. 2 is characterized by charge transfer3

bands. The bands appear before 300 nm are charac-
terized by intra-ligand charge transition, whereas,
bands displayed in the visible region are assigned to

Žthe ligand to metal charge transfer bands relating to
Ž .p™ t Ru transitions. The basis of assignment is2g

w x Žthe earlier reports 39,40 on the spectral data in
.CH CN for a group of mixed-ligand complexes of3
Ž . Žruthenium III containing bipy and L where Ls

tertiary phosphines, chelating phosphines, isoni-
. w xtrosoketones 39,40 . These complexes showed one

Ž .or more ligand to metal charge transfer l.m.c.t.
Ž .bands p™ t origin in the visible region. Com-2g

plex 1 was electrochemically examined at a plat-
inum-working electrode in acetonitrile solution.
Cyclic voltammogram of complex 1 showed one

Žquasi-reversible couple at E s 0.54 V vs.1r2
. Ž .AgrAgCl with a peak-to-peak separation D Ep
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Fig. 1. Schematic representation of complex-1.

value of 120 mV. This couple is assigned as
w IIIŽ .Ž . x2q w IIŽ . Ž . xqRu app bipy H O – Ru app - bipy H O2 2

redox couple. Constant–potential coulometry and
current height consideration confirmed the one-elec-

Žtron nature of the redox process ns0.98; i ri ;pa pc
.1 .

Spectral changes that occurs by addition of t-
BuOOH to an aqueous solution of complex 1 is
shown in Fig. 2. The appearance of the peak at 392
nm is attributed to the formation of high-valent

Ž .Ru V -oxo species by considering the close resem-
Ž .blance of the spectral features of oxo-ruthenium V

w xcomplexes reported earlier 17,18,28,41–44 . Fur-
ther, support in favour of the formation of oxo-

Ž .ruthenium V species came from the IR spectrum of
Žthe solid mass obtained by evaporation of the resul-

.tant solution to dryness , which showed a band at
y1 Ž .860 cm , characteristic of ruthenium V -oxo species

w x17,18,28,41–44 .
Ž .Catalytic oxidations of the organic substrates S

was carried out in a biphasic medium
Ž .CH Cl rH O in the presence of a PTC benzyl-2 2 2

tributylammonium chloride. The results of the com-
Žplex 1 catalyzed reaction see Section 2 for reaction

.conditions are summarized in Table 1. Blank experi-
ments established that each component is essential
for an effective catalytic transformation and the oxi-
dation did not take place under O in absence of2

t-BuOOH. Complex 1rt-BuOOH system does not
epoxidise cyclohexene, but rather, hydroxylates to

w xcyclohexene-1-ol. In the earlier reports 32,33 on
Ž .Ru III -complexes catalyzed conversion of cyclohex-

ene to cyclohexene-1-ol using t-BuOOH, formation
Ž .of a Ru V -oxo intermediate was proposed. Results

of the present investigation once again suggests that
the source of oxygen transferred in the formation of

Ž .cyclohexene-1-ol from cyclohexene is a Ru V -oxo
Žcomplex. Approach of the allylic hydrogen filled s

.orbital of a-C–H of cyclohexene seems to be kinet-
Žically favoured than that of the olefinic unit i.e.

.p-filled MO of olefin towards highly electrophilic
R u5 O bond. T he special affin ity of
w VŽ .Ž . x2qRu app bipy O for oxo-functionalisation of
`C H bond may be explicable, at least conceptually,

` Žin terms of free access of allylic C H bond to the
. w xRu5O bond through side on approach 45 , as the

- Ž .coordinated ‘app ’ ligand is flat Fig. 3 . There was
no epoxide obtained using other terminal oxidants
like KHSO , NaOCl and H O , and formation of5 2 2

cyclohexene-1-ol in each case suggests the genera-
Ž .tion of Ru V -oxo complex as an active intermediate

in the formation of cyclohexene-1-ol. With stilbenes,
oxidative cleavage of the C5C double bond to yield
benzaldehyde appears to be the dominant reaction,

Ž . Ž . Ž . w x y4Fig. 2. Spectra of a complex-1 and b complex-1q t-BuOOH spectra taken after 90 mins of mixing , complex-1 s1.34=10 M,
w x y3 Ž .t-BuOOH s2=10 M, pHs5.0 acetate-buffer , Ts258C.
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though epoxides are also produced in the reaction
Ž .mixture Table 1 . In order to know the decline in

yield of the epoxide products, oxidation of cis- and
trans-stilbene epoxides was examined with complex
1rt-BuOOH system and it was found that benzal-
dehyde is the reaction product in both cases, but in
low yield. This suggests that the pathway involved in
benzaldehyde formation does not require prior for-
mation of either cis- or trans-stilbene oxide. The
formation of epoxides in case of stilbene oxidation
Ž .though in poor yields are explicable with regards to
the fact that it must add an oxygen atom to preserve
the coordination number 4 at carbon. More important
aspect of the present catalytic system is that the
complex 1, in the presence of t-BuOOH, can readily

`functionalise C H bond of various organic sub-
strates. It is capable of oxidising cyclohexane to
cyclohexanol, toluene to benzyl alcohol and tetrahy-
drofuran to g-butyrolactone. For alcohols, it oxidises
cyclohexanol to cyclohexanone and benzyl alcohol
to benzaldehyde. Complex 1rt-BuOOH system could
not oxidise t-BuOH. This supports the need for an
a-hydrogen adjacent to the hydroxyl group for hy-
dride transfer. The relatively higher product yield
obtained for oxidation of benzyl alcohol than cyclo-

Table 1
Results of the complex 1 catalysed oxidation of organic substrates
with t-BuOOHa

b cŽ . Ž .Substrate Product s Yield %

Cyclohexene Cyclohexene-1-ol 60
Cyclohexene-1-one 5

Cyclohexane Cyclohexanol 4
Cyclohexanone 10

Cyclohexanol Cyclohexanone 27
cis-Stilbene Benzaldehyde 80

cis-Stilbeneoxide 3
trans-Stilbeneoxide 7

trans-Stilbene Benzaldehyde 77
cis-Stilbeneoxide 2
trans-Stilbeneoxide 6

cis-Stilbeneoxide Benzaldehyde 25
trans-Stilbeneoxide Benzaldehyde 27
Tetrahydrofuran g-Butyrolactone 43
Toluene Benzylalcohol 5

Benzaldehyde 23
Benzylalcohol Benzaldehyde 45

aSee Section 2 for reaction condition.
bAfter 4 h of reaction.
c Based on substrate concentration.

Fig. 3. Side-on attack of the C–H bond of cyclohexene on
Ž .Ru V -oxo intermediate.

Ž .hexanol Table 1 is due to the fact that a-CH unit of
benzyl alcohol is more acidic than cyclohexanol. If a
transfer of OHy is important to assist hydride trans-

Žfer, the better H-bonding hydroxyl donor benzyl
.alcohol would have an advantage kinetically. Thus,

Ž .the results of alcohol oxidation Table 1 in the
present case are consistent to the orthogonal a-CH

w xapproach advocated by Cundary and Drago 45 .

4. Conclusion

A new ruthenium complex, 1, is synthesized. The
results of the present studies convincingly demon-

Ž .strate the catalytic ability of the reported complex 1
`for oxo-functionalisation of aliphatic C H bond with

Ž .t-BuOOH. A high-valent Ru V -oxo complex is pro-
posed to be the active species in the catalytic pro-

Žcess. The presence of ‘bipy’ which makes the oxo
. ygroup enough electrophilic in nature and flat ‘app ’

Žwhich fulfills the steric requirement for free ap-
` .proach of C H bond orthogonal to Ru5O bond

probably leads the reported catalytic system to the
`preferential C H bond functionalisation via hydro-

gen atomrhydride abstraction.
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